16000+50x+0.2x^2=100000

Simple and best practice solution for 16000+50x+0.2x^2=100000 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16000+50x+0.2x^2=100000 equation:



16000+50x+0.2x^2=100000
We move all terms to the left:
16000+50x+0.2x^2-(100000)=0
We add all the numbers together, and all the variables
0.2x^2+50x-84000=0
a = 0.2; b = 50; c = -84000;
Δ = b2-4ac
Δ = 502-4·0.2·(-84000)
Δ = 69700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{69700}=\sqrt{100*697}=\sqrt{100}*\sqrt{697}=10\sqrt{697}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-10\sqrt{697}}{2*0.2}=\frac{-50-10\sqrt{697}}{0.4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+10\sqrt{697}}{2*0.2}=\frac{-50+10\sqrt{697}}{0.4} $

See similar equations:

| 111=13x+7 | | x+3=-7-(-4x) | | 60/h=2 | | 13x+7=111 | | −65y+19=−2y+41 | | (5m÷4)-(m÷6)=(13÷12) | | 2x=19-18 | | -4a=(9)-21 | | 4x-3=2×7 | | 1-6=n+2 | | 4(0)+6y=36 | | 17z=16z+12 | | 4x-6=7+3x-5 | | -3/2+x=4 | | |6x|+8=32 | | 4-2(x-1)=-8 | | 7x+13=x-1 | | 3/7x-6=2x+5 | | 6m^2+9=0 | | 7x-9=6x+10 | | 3÷4x=6 | | 10+y-10=9 | | 4n+9=-2n-9 | | 2(4x+2)=-4(2x-5)-3x | | 90°+2x°+x°=180° | | 90°+2x°+x°=189° | | 4.5x-7x+4x=0 | | x²+20✓2x+400=0 | | 7x-42=16x-13 | | 2^x-6(2^x)=7 | | b^2-24b+320=0 | | 6x-17=4x=1 |

Equations solver categories